Habitat Could Support Steelhead
Manmade Structures Block Access to Spawning Grounds

A report released Monday concludes that steelhead could move up Alameda Creek to spawn, if manmade structures in the creek channel are modified or removed.

Steelhead are an ocean-going form of rainbow trout closely related to salmon.

There has been an interest in restoration of steelhead in Alameda Creek in the past. Recently, volunteers have restored adult steelhead, transplanted them around the major barriers and released them upstream. In addition, state-of-the-art genetic techniques have documented that these fish are not from hatcheries. Instead, they are the remnants of a wild population of trout that are listed as threatened species under the Federal Endangered Species Act.

The fact that these fish are part of the native population means that they are adapted to the local environment, said Pete Alexander, a fisheries biologist for the East Bay Regional Park District. "This means they are well-suited to respond to restoration actions."

There appears to be adequate habitat for spawning. Presently, the fish cannot get to it," said Laura Kilgore, an Alameda County Flood Control and Water Conservation District, which commissioned the study along with the California Coastal Conservancy.

A key barrier to fish migration is a drop structure that prevents coastal salmon from reaching and upstream bridge supports where Union Pacific Railroad and BART cross the Creek in Piedmont.

Preparation of the final report was supervised by the Alameda Creek Fisheries Restoration Workgroup, a committee composed of staff from fish and wildlife, flood control and water supply agencies, local fisherman and environmental organizations.

The report was prepared by Applied Marine Sciences of Livermore and Haga Environmental Science of Richmond. It concludes that the steelhead could complete their life cycle in the watershed with provision of fish passage at key locations. "The precise size of the steelhead run that would result cannot be predicted," cautioned Andrew Gunther, vice president of Applied Marine Sciences. Gunther, point out that climate, variation, water diversion practices and future human development are factors that could influence the ultimate success of restoration efforts.

Federal funds available through the U.S. Army Corps of Engineers are being used for the work.

Steelhead

"Paul Pompa, general manager of the Alameda County Water District, said the report raises some key questions that still need to be answered before a final evaluation can be made of the impacts of the restoration effort would have on the district's water supply operations. These issues include how much water would need to flow to the Bay to facilitate fish migration, the timing of the migration, and sources of water to provide the needed flows."

The water district operates several inflatable dams on Alameda Creek, which are used to divert water to the adjacent quarry lakes for groundwater recharge.

Jeff Miller of the Alameda Creek Alliance, a watershed protection group which has been lobbying to have steelhead and salmon restored to the creek, said his group is pleased with the report. "We've had wild steelhead running up in the lower creek for many years. This report provides the basis for moving ahead with restoration projects which will allow native fish to once again thrive in Alameda Creek."

Miller concluded, "Residents along the watershed are going to be thrilled when they can watch these fish spawn in their local creek in a few years."

"Paul Pompa, general manager of the Alameda County Water District, said the report raises some key questions that still need to be answered before a final evaluation can be made of the impacts of the restoration effort would have on the district's water supply operations. These issues include how much water would need to flow to the Bay to facilitate fish migration, the timing of the migration, and sources of water to provide the needed flows."

The water district operates several inflatable dams on Alameda Creek, which are used to divert water to the adjacent quarry lakes for groundwater recharge.